Spatial Domain Image
Processing



Image Enhancement

Image Enhancement means improvement of images to be
suitable for specific applications.
Example:

Note: each 1image enhancement technique that 1s suitable for
one application may not be suitable for other applications.



Neighbourhooo

Origin

* For example, an operator T
utilizes only the pixels
in the area of the
Image spanned by
the neighborhood,
e.g., a 3x3
neighborhood.
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Point processing - 1x1 neighborhood

» Gray-level Transformation Function

g6, ) =Tl f(x,»)] == s=T(r)
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Contrast Stretching
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Histogram

« Histogram of a digital image is a distribution function

h(ry) =n

— where 7, is the kth gray level

and 7, is the number of pixels having gray level 7,

Count

Vk Intensity



Dark image
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Ditferent types of histograms:

* Normalized histogram

pro=n/n, k=1, ..,L

* Histogram 1s useful for
-- Image enhancement
-- Image compression
-- Image segmentation
-- etc.

—> Want to have a more flat histogram !

=> Histogram Equalization



Histogram Equalization

a Image
Enhancement
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To make histogram distributed uniformly



Aogirithm of Histogram Equalization

1. Compute the histogram of the input image:

hk) = #(c)|f(x.y)=k}, where k=0 to 255.

2. Compute the transformation function: . iative normalized histogram

T(k) =255*§h(j) _— i

7]

7=0

S = T(ry) («

3. Transform the value of each pixel by :
g =T(fx.y))

0




Histogram Equalization Example

Intensity | # pixels Accumulative Sum of P,

0 20 20/100=10.2

1 5 (20+5)/100 = 0.25

2 25 (20+5+25)/100 = 0.5

3 10 (20+5+25+10)/100 = 0.6

4 15 (20+5+25+10+15)/100 = 0.75

5 5 (20+5+25+10+15+5)/100 = 0.8

6 10 (20+5+25+10+15+5+10)/100 = 0.9

7 10 (20+5+25+10+15+5+10+10)/100 = 1.0
Total 100 1.0




Histogram Equalization Example

Intensity No. of Pixels Acc Sum | Output value | Quantized
(r) (n;) of P, Output (s)
0 20 0.2 02x7=1.4 1

1 5 0.25 0.25*7=1.75 |1

2 25 0.5 0.5*7=3.5 3

3 10 0.6 0.6*7=4.2 4

4 15 0.75 0.75%7=35.25 |5

5 5 0.8 0.8%7=15.6 5

6 10 0.9 0.9%7=6.3 6

7 10 1.0 1.0x7 =17 7

Total 100




Mask Processing



Mask processing - Spatial Filtering

Image origin FIGURE 3.32 The
‘ mechanics of
' spatial filtering.
The magnified
drawing shows a
3 % 3 mask and
the image section
directly under it:
the image section
is shown
displaced out
from under the
mask for ease of
readability.

* Filter, Mask, Kernel,
Template, Window

» Coefficients

e Linear Filtering vs

Image f(x. y)

Nonlinear Filtering

(e.g., median filtering)
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Mask coefficients, showing
coordinate arrangement

Pixels of image
section under mask



Linear Smoothing Filters
— averaging filters
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Linear Smoothing Filters

— averaging filters

FIGURE 3.35 (a) Original image. of size 500 > 500 pixels. (b)—(f) Results of smoothing
with square averaging filter masks of sizes n = 3,5.9,15,and 35. respectively. The black
squares at the top are of sizes 3, 5.9, 15,25, 35,45, and 55 pixels. respectively: their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points. in
increments of 2 points: the large letter at the top is 60 points. The vertical bars are 5 pix-
els wide and 100 pixels high: their separation is 20 pixels. The diameter of the circles is
25 pixels. and their borders are 15 pixels apart: their gray levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 50 x 120 pixels.
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Linear Smoothing Filters
— averaging filters

3 'bic

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(¢) Result of thresholding (b). (Original image courtesy of NASA.)

Application: Averaging before Thresholding



Nonlinear smoothing Filters
— Order-Statistics Filters

Median Filter
-- the 50™ percentile of a ranked set of numbers
-- effective for reducing impulse noise,
or salt-and-pepper noise

Max Filter
-- the 100t percentile filter

Min Filter
-- the Ot percentile filter



Nonlinear Smoothing Filters
— Order-Statistics Filters

Salt-and-pepper

o 3x3 averaging filter 3x3 median filter
noise image

abc

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3 X 3averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi. Inc.)



Edge detection and sharpening
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FIGURE 3.38
(a) A simple

image. (b) 1-D
horizontal gray-
level profile along f
the center of the !
image and
including the
isolated noise
point.
(¢) Simplified
profile (the points 1
are joined by “
dashed lines to ll |
simplify ) | |
interpretation). L
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Edge detection

Intensity profile
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Edge detection

Sobel operators
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Edge detection

Gradient magnitude

2 2
‘VP‘ = oF + oF
0x dy

r ‘ a b
N FIGURE 3.45
Optical image of
contact lens (note
defects on the
boundary at 4 and
5 o’clock).
(b) Sobel
eradient.
(Original image
courtesy of
Mr. Pete Sites,
Perceptics
Corporation.)




Gradient direction

k f
d

VI= g5

The gradient direction is given by:

6 =tan—1 (g%/g%)



L aplacian sharpening
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L aplacian sharpening
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Laplacian sharpening results in larger intensity discontinuity
near the edge.



L aplacian sharpening

Before sharpening
p(x)

After sharpening
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L aplacian sharpening

2 2
Used for estimating image Laplacian VP = 0 €)+ 0 f
0x dy
-11-1]-1 01-110
11814 1lalg The c§r}ter of the mask
1S positive
-11-1]-1 01-110
or
1111 01110
The center of the mask
1]-8]1 1]-4]1 1s negative
1111 01110

Application: Enhance edge, line, point

Disadvantage: Enhance noise



L aplacian sharpening




| aplacian sharpening
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a b ¢ FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (¢) Scanning
0 1 O d e electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b),
respectively. Note how much sharper (e) is than (d). (Original image courtesy of Mr. Michael
Shaffer, Department of Geological Sciences, University (ihéges from Rafgeli€ie. Gonzalez and Richard E.
Wood, Digital Tmage Processing, 2" Edition.




Digital Image Processing
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